
International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1251
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Abstract— Evolving multi-parameter, multi-configuration

systems require regression test suite that can be customized. This
is in terms of run time. Run time can be customized by
generating the combinations using combinatorial techniques. For
systems like Contiki operating system, the test cases need to be
executed in its simulator Cooja. Executing test cases in a
simulator requires functional test cases to be generated from the
combinatorial parameter combinations obtained. In this work we
present a methodology to generate the functional test cases. We
present Functional Test Case Generator for Contiki and Cooja
(FTCGCC), which is a tool developed using our methodology. We
demonstrate use of our tool by generating customizable
regression test suite for Contiki and Cooja using code coverage as
criteria. FTCGCC is developed for the test case generation when
target System Under Test is IoT operating system Contiki and its
simulator Cooja. We find that our tool generates all the test
cases. FTCGCC generates the cases which are readily executable
in the Contiki and Cooja environment. Further, the approach
mentioned can be used in other cases where the simulators are
involved which accept the XML based test cases. The design of
the FTCGCC can be reused for other simulators. The FTCGCC
test case generator engine is generic in nature.

Index Terms— ACTS, CONTIKI, COOJA, CT, CT-RTS,
NIST

I. INTRODUCTION
OMBINATORIAL testing (CT) is field of testing which is in
practice both in the industry and research [1]. When the

System Under Test (SUT) has combination of configurations
or input parameters, CT can be used to reduce the number of
regression test cases needed [2] [3]. National Institute of
Standards and Technology (NIST) gives the tools which aid in
performing combinatorial testing. Advanced Combinatorial
Testing for Software (ACTS) is one such tool [4]. ACTS tool
takes the input parameter and input parameter modeling and
generates the test design document which is in the form of

This paragraph of the first footnote will contain the date on which you

submitted your paper for review. It will als o contain support information,
including sponsor and financial support acknowledgment. For example, “This
work was supported in part by the U.S. Department of Commerce under Grant
BS123456.”

Abhinandan H. Patil is with the BITS Pilani, Goa, India, since Jan 2014 (e-
mail: abhinandan_patil_1414@yahoo.com).

Neena Goveas, is with BITS Pilani, Goa, India. She is with the Department
of CS and IS as Professor (e-mail: neena@goa.bits-pilani.ac.in).

Krishnan Rangarajan is with DCE, Bengaluru, Karnataka, India. He is with
the CSE Department as Professor (e-mail: krishnanr@gmail.com).

rows. Each row is independent test case. For the cases when
the test cases are readily executable as in the case of Graphical
User Interface (GUI) applications, no intermediate step is
required. However, when the test environment expects the test
cases in a particular format, intermediate processing is
required. For the System Under Test (SUT) as Contiki
operating system and its simulator Cooja, the test design
contains the test cases which are not readily executable in the
SUT test environment. Manual generation of functional test
cases is a tedious and error prone task. In this work we present
our tool, Functional Test Case Generator which can be used
for auto-generation of functional test cases. We demonstrate
the successful application of our tool to generate the functional
test cases for the Contiki operating system. The novelty of the
FTCGCC is that it is a tool developed for the specific
requirements of the test case generation for Contiki and Cooja.
We evaluated few generic purpose test case generators such as
IBM ATG, TCGTool, Randoop, Automatic Testing Platform,
Conformiq. These are generic purpose tools. These tools
generate the test cases either on the basis of code or
requirement. However, they do not meet the requirements of
functional test case generation for Contiki and Cooja. We
therefore had to develop the FTCGCC from scratch for this
work. The FTCGCC takes the text file as input and generates
the test cases which are readily executable in Contiki and
Cooja based test environment as explained in the subsequent
sections of this work. In this work we give the details of the
high level design and software implementation of the tool in
further sections. The usage of the tool and final results of the
test case execution are also documented.

 Table 1. Existing test case generation tools

Test case
generator

Owner Remarks

IBM ATG IBM Model Based
Testing tool

TCGTool SourceForge Test Case
generation from
finite state
machines.

Randoop University of
Washinton

Junit test case
generator

Automatic
Testing

SourceForge Useful for the
web

Functional Test Case Generator for Contiki
Operating System and Cooja Simulator

Abhinandan H. Patil, BITS Pilani, Goa Campus, BITS Pilani, Goa Campus, and
Krishnan R, DCE, Bengaluru

C

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1252
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Platform applications on
the client side

Conformiq Conformiq Test case
generation from
graphical
model.

Blueprint Blueprintsys Test case
generation from
requirements.

II. COMBINATORIAL TESTING AND NIST ACTS TOOL
For real world software, the number of input parameters and
their combinations can be very large making it impractical to
develop test cases covering all the combinations of the input
parameters. Combinatorial testing addresses this issue partially
[2]. NIST offers ACTS covering array generator produces
compact arrays covering 2-way to 6-way combinations.
We use the ACTS tool to generate the required combinations
to generate a regression test suite. We use as SUT the Contiki
operating system and its Cooja simulator. In Section III and IV
we explain the details of the SUT chosen and the challenges in
developing a practical regression test suite. Subsequent
sections explain more about the ACTS tool usage and the
details of our proposed tool f or auto generation of the test
cases from the ACTS output.

III. CONTIKI THE IOT OPERATING SYSTEM
Internet of Things (IoT) comprises of things or devices with
unique identities that are connected to the internet. The choice
of the operating system for the device depends on the purpose
of the node. A typical IoT network comprises of expensive
nodes and inexpensive nodes. Inexpensive nodes just collect
and forward the data to the nearest expensive node. Expensive
nodes on the other hand do have few analytics capabilities in
addition to the functionalities possessed by the inexpensive
nodes. A generic IoT device supports Connectivity, Processor,
Audio/Video interfaces, I/O interfaces for sensors and
actuators, Memory interfaces and Storage interfaces.

Table 2. Node operating systems

Node type Example operating system
Inexpensive node Contiki, RIOT and Tiny OS
Expensive node Ubuntu core, Arch Linux,

Amazon FreeRTOS,
Android Things, Rasbian
Linux etc

The Operating system will have all these constraints into
consideration while being developed. In addition the IoT
operating system needs to support the protocols desired. The
IoT protocol stack contains mainly four layers:

i. Link layer
ii. Network layer

iii. Transport layer

iv. Application layer

Table 3. IoT layers and protocols

Layer Protocol examples
Link layer Ethernet, Bluetooth, Zig

bee, Wi-Fi, Wi-max or long
range communication
protocol such as
3G/LTE/5G etc.

Network layer IPV4, IPV6, 6 LOW PAN
Transport layer TCP or UDP
Application layer HTTP, COAP, Websockets,

MQTT, XMPP or AMQP

Contiki, as the device layer OS, supports the protocols
mentioned above. Contiki has the functionality
implementation for all the above mentioned protocols. To test
the protocol functionality a regression test suite needs to
contain the corresponding test cases. Contiki operating system
needs be tested to ensure that all the claimed platforms are
supported by the Contiki operating system. Contiki supports
platforms such as Exp5438, z1, wismote, micaz, sky, sentilla-
usb and esb among others. In addition, there needs to be test
cases to for the other functionality such as file system support
etc..

IV. COOJA SIMULATOR
The Cooja simulator in its current form was designed and
developed by Fredrik Osterlind. Since then it has evolved by
many contributors. The acronym Cooja is derived from
Contiki Operating System Java Simulator. Originally the
Contiki was developed for resource constrained Wireless
Sensor Network (WSN) nodes [6]. The main goal of the Cooja
simulator is extensibility. Cooja achieves it using the
interfaces and plugins.
Interfaces is for node property such as

• Position of the node
• Button
• Radio transmitter

On the other hand plugin is used for interacting with
simulation such as

• To control simulation speed
• To watch all network traffic between the simulated

nodes
Since Cooja simulator supports several different simulation
environments at a s ame time simulation of HetNets
(Heterogeneous Networks) is possible. The advantage of using
the Java is that the Java supports JNI (Java Native Interface)
using which the simulator can talk to real Contiki operating
systems.
The test cases of the Contiki/Cooja are in the form of XML
files. These files have *.csc extensions. The test cases
typically compile the firmware in the *.c format and embed
the firm ware in the Simulator. The firmware compiled
depends on the target platform. In this work we focus on the
XML files with *.csc extension and their auto-generation for
the task at hand.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1253
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

V. REGRESSION TEST SUITE AND AUTOGENERATION OF
FUNCTIONAL TEST CASES
Contiki operating system and its regression test suite is made
available publically. The regression test suite has test cases to
cover the protocols mentioned in the Table 3 and all other
parameters. We did a study of the length of the fuctional test
case as the number of parameters increased [5]. We found that
an input of all parameters will result in test cases with XML
files of length exceeding 1500 lines. We found that using just
two parameters at a t ime results in a m anageable length of
XML files and does not significantly reduce code coverage.
The test cases have an average length of 150-450 XML Lines
Of Code (LOC) per test case. There was a need to we develop
a tool that auto generates the XML files partially if not
complete in all aspects. Our proposed Functional Test Case
Generator for Contiki and Cooja (FTCGCC) was developed
and was found to be effective in auto generation of XML files.
We developed the tool using J2SE. Section VII and VIII
elaborate more on the tool code, purpose and usage.

VI. REGRESSION TEST SUITE OF CONTIKI OPERATING
SYSTEM

Contiki team maintains the test suite called regression test
suite which is available to the user community. We studied the
regression test suite that is publically available and looked at
the code coverage aspects of it. We found that there was a
need to re-design the test cases to meet required coverage in a
short duration, preferably over-night execution [6], [7].
Further, it was noticed that the test cases were concentrated
around few hardware (mote) types in the test suite [8]. We
used the ACTS tool to generate a combination of parameters
to ensure combinatorial coverage. The output of the ACTS
tool gave output test cases which were evenly distributed
around all the parameters. Further steps were needed to
convert this test design into functional test cases.

It was found that the test cases combinations that were output
from the ACTS tool needed to be processed to be ready to be
inputs to Contiki as SUT. It was noticed that processing step
was needed which would convert the test cases output by the
ACTS to functional test cases. In addition we found that the
base regression test suite of Contiki and Cooja consisted of 64
test cases with incomplete code coverage. There was need to
add the additional test cases to the base regression test suite to
see how the code coverage varies with the additional test cases
using code coverage tools. For this, we used the code coverage
tools CodeCover and OpenClover [9] [10] [11].

The design of the test suite was done in the ACTS tool. ACTS
tool generated 289 test cases. It was noticed that the 289 test
cases were super-set of the base regression test suite. Since the
execution time needs to be typically over-night, there was a
need to to limit the test cases. Authors studied the code
coverage with additional 35 test cases being added.
There exist two types of scenarios as depicted in the Figure 1.
when ACTS tool is involved.

• When the test cases are readily executable on the
target SUT as in case of GUI SUT

• When the test cases in the ACTS design need to be
converted into executable test cases called functional
test cases using the intermediate step.

In this latter case, we need a tool to make a co mplete
Generation to Execution tool. For Contiki OS we found that
each test case requires more than 100 lines of XML code. And
for the additional 35 test cases, straight calculation gives more
than 3500 lines of XML code. In addition, manually coding
further means that the process could be error prone. We
looked at possible mechanism for automation of the functional
test case generation. Our work has resulted in development of
Functional Test Case Generator for Contiki and Cooja
(FTCGCC). The tool takes as an input a human readable text
file and generates XML files understandable by the Cooja
simulator.

VII. REQUIREMENTS OF THE FTCGCC
High level requirements for the tool are as follows:

1. The FTCGCC should take the text file and generate
the XML files which are in the *.csc format
understandable by Cooja simulator

2. The text file consists of records separated by special
characters “(“ and “)”

3. Each record maps to individual test case.
4. Each line in the record separated by special character

“{“ and “}” called field within the test case, should
map to a logical block of the test case.

5. The input text file could contain any number of
records and any number of fields within the records.
The parser should be generic enough to handle this.

VIII. HIGH LEVEL DESIGN OF FTCGCC
The tool is designed such that it takes the input text file output
of the ACTS tool consisting of records and fields. In the
output, the field and field values are separated by special
character “,”. If the input file consists of N records, the
FTCGCC outputs N test cases. The test case creation is two
pass mechanism:

• In the first pass, complete test case except the
JavaScript is created using the FTCGCC.

• Since the JavaScript is scenario specific, it needs to
be coded manually to suit the scenario under study.

• In the second pass, the JavaScript is embedded
manually in the test case created in the first pass.

Figure 1. gives the high-level functionality of the tool. As can
be seen from the diagram, tool accepts the text file as input
and generates the test cases as per the requirement. If the input
file instructs the tool to generate “m” test cases, the tool
generates the “m” test cases. Further sections elaborate the
tool in more details. As will be explained in the subsequent
sections, the test cases are complete in all respect except for
the scenario specific JavaScript. JavaScript contains the
scenario specific information which needs to be coded using
the JavaScript language.

Figure 2. gives the blocks involved in the design of the
FTCGCC.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1254
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

• First the input file is split using the Java’s regexp
package, which is described in Section 5.1. This step
splits the input file in the form of records and fields.
Each record maps to one test case and each field
within the record maps to logical block within the test
case.

• Next, the data structures within the tool are populated
as per the parsed input file. These data structures act
as driver data. The driver drives the generic engine
which is meant for generating the XML files. The
Cooja code is reused heavily in the generic engine.

 Fig 1. Functionality of FTCGCC

Table 4. Stages and Functionality of FTCGCC

Stage Description
Stage 1 Creation of input file to

FTCGCC
Stage 2 FTCGCC creates records

and fields using the Java
regexp package

Stage 3 FTCGCC populates the vital
data structures which act as
driver data

Stage 4 FTCGCC drives the generic
engine using the driver data
of stage 3.

Stage 5 FTCGCC outputs the
skeleton XML files in *.csc
format.

Stage 6 The scenario specific
JavaScript is embedded in
the XML

Stage 7 Fully functional test cases
are ready

 Fig 2. Stages and block diagram of FTCGCC

IX. SOFTWARE IMPLEMENTATION
To design a tool with the taking care of all the requirements,
existing *.csc files of the Contiki and Cooja were analyzed.
The implementation phase came up with the generic *.csc
template as depicted in Figure 3. Vital entities that drive the
simulator of the Contiki were observed. In this phase we came
up with the template input file to be supplied to the tool and
the same is depicted in Figure 4.
The csc which stands for the Cooja simulation configuration
file contains the simulation configuration information
understandable by the Cooja simulator. The simulation
configuration mainly contains blocks that can be classified in
the following categories
i) Simulation
ii) Plugins
iii) Scenario specific JavaScript
Simulation block contains radio medium information with
mote type (along with firmware information) and mote
information. Mote type and mote information is repeatable
block.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1255
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

 Figure 3. Generic structure of the csc file.

A. Java’s regexp parser
The java.util.regex package is designed to perform
sophisticated pattern matching operations. Regular expression
is a s tring of characters describing character sequences.
Regular expressions also called patterns can be a s et of
characters, wildcard character combinations along with
various quantifiers.
Regexp is a powerful package for text processing. Particularly,
following operations can be done very easily with the help of
Regexp

• Text processing
• Text manipulation
• Tokenisation

The input file was designed such that:
• Each record which maps to test case starts with

special character “(“ and ends with “)”
• Each field which maps to logical block in the test

case starts with special character “{“ and ends with
“}”

• Field name and field values are separated by special
character “,”

We created the patterns for each of the unique character
sequences mentioned above and we split the character
sequences accordingly.

 Fig 4. Sample input file for the FTCGCC

B. Java’s document object model parser
In our proposed tool FTCGCC we integrate a third party
software Java Document Object Model (JDOM). JDOM was
created by Jason Hunter and Brett. JDOM is a m ethod of
representing XML document for easy reading/writing and
manipulation. JDOM is an open source initiative with Apache
style license. JDOM integrates with Document Object Model
(DOM) and Simple API for XML (SAX).
JDOM salient features include

• It is light weight
• It can represent full document
• It supports document modification
• It is easy to use

FTCGCC imports Application Programming Interfaces (APIs)
of following four classes

• org.jdom.Document
• org.jdom.Element
• org.jdom.output.XMLOutputter
• org.jdom.output.Format

C. Data structure and functions used in FTCGCC
Java’s ArrayList can dynamically grow or shrink and is a
variable length array of object references. Vector is similar to
ArrayList, but is synchronized. Table 5. gives the important
data structures and functions. Description column details the
intended functionality.

Table 5. Important data structures and functions

Entity Description
private Vector<Mote> motes Stores the motes

in Vector
private Vector<MoteType> moteTypes Stores the

moteTypes in
Vector

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1256
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

public static ArrayList<Element>
config

Stores the XML
elements in
ArrayList

public MoteType[] getMoteTypes() Returns all mote
types in
simulation

public MoteType getMoteType(String
identifier)

Returns mote
type with given
identifier.

public Collection<Element>
getConfigXML()

Returns the
current
simulation config
represented by
XML elements.

public boolean setConfigXML() Sets the current
simulation config
depending on the
given
configuration

public void saveSimulationConfig(File
file)

Saves the
Simulation
Config as an
XML

X. FTCGCC USAGE IN CONTIKI ENVIRONMENT
After designing and developing our FTCGCC tool we
simplified the steps needed to use it. The procedure for its use
are summarized below.

1. github
"https://github.com/Abhinandan1414/CoojaTestCaseGeneratio
n", download the content
2. Create an input file with the syntax which adheres to syntax
of "GenTest.txt"
3. Set the CLASSPATH to $CLASSPATH:cooja.jar:.
4. Copy the artifacts to directory of your setup
5. Create directory lib and copy jdom.jar jsyntaxpane.jar
log4j.jar JDOM_LICENSE JSYNTAXPANE_LICENSE
LOG4J_LICENSE
6. Then compile the GenTestcsc.java
7. Run GenTestcsc

The user needs to visit the github. User needs to download the
content. An input file with the name GenTest.txt needs to be
created with the syntax mentioned. The class path needs to be
set to path which reflects current path with the cooja.jar
appended. Since the Cooja makes use of third party libraries,
the third party libraries need to be copied in a manner
explained. The source file GenTestcsc.java needs to be
compiled. The last step is running the GenTestcsc.java. The
output will be the test cases as instructed by the input file,
GenTest.txt.

XI. FTCGCC USAGE RESULTS
The tool FTCGCC was successfully used for generating
additional test cases to be added to the base regression test
suite of Contiki and Cooja and saved approximately 100 lines
of XML coding per test case. A sample XML file generated is

depicted in the Figure 5. As can be seen from the figure 5, the
test case is complete in all aspects except the JavaScript which
is embedded manually in the subsequent steps. The file
contains the information such as number of motes and mote
configuration, radio medium and mote position information.
Complete code to be used along with the usage details is in Git
hub repository [12]. Final logs of the test cases are kept in the
Google docs repository [13]. The directory contains the
OpenClover log files which can be readily read in the browser
of choice. To begin with the index.html needs to be opened in
the browser.

 Figure 5. Sample output of FTCGCC

XII. CONCLUSION
This work presents tool Functional Test Case Generator for
Contiki and Cooja. With this tool it was possible to
successfully generate functional test cases. Augmentation of
the existing regression test suite was studied in th is work.
Using our tool, a user could customize the number of test
cases which are added to the existing regression test suite.
This will result in a customized generation with the
requirement of code coverage, execution time etc. Our tool
will reduce the manual effort of manual coding needed for the
functional test case generation. Since the manual coding is
reduced there was reductions in the test case errors and the
manual effort. Further since the test case generation was
automated it is possible to re-generate the test cases as per the
need of coverage and execution time the test suite. The input
file to the tool needs to be modified as per the needs.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 1, January-2019 1257
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

The procedure that was followed during the study of the
Contiki Operating System and its Cooja simulator can be used
with any other multiparameter multi input software. No
information other than the publically available data was
needed to follow the procedure described in this work and
design a suitable tool. In the future we will be looking at other
such software and their regression test suites. The study and
demonstration in this work can be used to apply the similar
techniques for other open source software.

REFERENCES
[1] C. Nie, "Practical Combinatorial Testing," ACM, 2014.
[2] R. Kuhn, Y. Lee and R. N.Kacker, Introduction to Combinatorial

Testing, A Chapman and Hall Books, 2013.
[3] R. Kuhn, Y. Lee and R. N. Kacker, "Practical Combinatorial Testing

Manual," 2017.
[4] T. ACTS, 2018. [Online]. Available:

http://csrc.nist.gov/groups/SNS/acts/index.html.
[5] A. H. Patil, N. Goveas and K. Rangarajan, “"Test Suite Design

Methodology Using Combinatorial Approach for Internet of Things
Operating Systems," Journal of Software Engineering and
Applications,2015, 8, 303-312. doi: 10.4236/jsea.2015.87031

[6] Contiki, "Contiki," 2018. [Online]. Available: http://www.contiki-
os.org.

[7] Contiki, "Contiki Supported hardware platforms," 2018. [Online].
Available: http://www.contiki-os.org/hardware.html.

[8] A. H. Patil, N. Goveas and K. Rangarajan, "Re-architecture of Contiki
and Cooja Regression Test Suites using Combinatorial Testing
Approach," ACM SIGSOFT SEN, 2015.

[9] CodeCover, "CodeCover main," 2018. [Online]. Available:
http://codecover.org.

[10] OpenClover, "OpenClover main," 2018. [Online]. Available:
http://openclover.org.

[11] A. H. Patil, N. Goveas and K. Rangarajan, "Generating Effective Test
Suite for Multiparameter Software using ACTS Tool and its Verification
using Code Coverage Tools," IJSER, 2018.

[12] A. H. Patil, N. Goveas and K. Rangarajan, "Test case Autogeneration
code Git h ub repository," 2018. [Online]. Available:
https://github.com/Abhinandan1414/CoojaTestCaseGeneration.

[13] A. H. Patil, N. Goveas and K. Rangarajan, "Test execution logs," 2018.
[Online]. Available:
https://drive.google.com/drive/folders/0B2vHzPHgs0nVZWxtSE5sVVd
GUmc.

[14] IBM TCATG, “IBM Test Case Auto Generator,”, 2018, [Online].
Available
:https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.3/com.bt
c.tcatg.user.doc/topics/com.btc.tcatg.atgug.doc.html

[15] TCGTool, “Test Case Generation Tool”, 2018, [Online]. Available
https://sourceforge.net/projects/tcgtool/

[16] Randoop, “Randoop Tool”, 2018, [Online]. Available
https://randoop.github.io/randoop/

[17] ATestingGP, “Automatic Testing Platform,” 2018, [Online]. Available
http://atestingp.sourceforge.net/

[18] Conformiq, “Conformiq Tool,” 2018 , [Online]. Available
https://www.conformiq.com/

[19] BlueprintSys, “BluePrintSys,” 2018 [Online]. Available
https://www.blueprintsys.com/

Abhinandan H. Patil is a
research scholar at BITS Pilani,
Goa campus since Jan 2014.
Before joining BITS Pilani, Goa
he was working in wireless

software industry mainly on wireless simulator for telecom
network. He has 10+ years of experience in wireless telecom
domain. His research interests include Software engineering,
Wireless networks, Simulator tools for wireless networks,
Verification and validation, AI/ML, Data Science and Cloud
computing. His previous industrial exposure spans across
companies like Motorola, Kshema Technologies (MPhasis
now), Infosys.
Prior to joining BITS Pilani, Goa, he was pursuing M. Tech in
Computer Science and Engineering from VTU PG Block
Belgaum. Abhinandan holds Bachelor’s degree from
Karnataka University Dharwad.

Neena Goveas is with the Department
of Computer Science at BITS Pilani K
K Birla Goa campus. For her PhD
thesis, she worked on "Mean field
approaches to thermodynamic
properties of magnetic systems" at IIT
Bombay, advisor Prof. G.
Mukhopadhyay. She worked on INDO-
US sponsored project "Development
and characterization of materials

suitable for magneto-optic Devices" at A. C. R. E., I. I. T.
Bombay. She continued her research as a DSTYoung Scientist
in a Project entitled "Study of low dimensional magnetic
systems" at IIT Guwahati. Other projects she was associated
as a PI or Co-PI are “Development of Remotely Configurable
Arbitrary Ramp Generator for FMCW Reflectometry, BRNS”
and “Implementation of Wireless Sensor
Network for Process Monitoring of GAIL’s Pipeline, GAIL
India Ltd”. Her main theme of research work is to study
complex systems. Using various mean field and computational
approaches to understand their properties. Recent research
work is on Network Science and its applications to transport,
social and computer networks; modeling of Cyber Physical
Systems and Wireless Sensor Networks; Construction of test
suites for large software systems.

Krishnan Rangarajan Krishnan
Rangarajan is Professor in CSE
department at Dayanand Sagar
College of Engineering,
Bangalore. He holds Ph.D from
University of Central Florida.
His research interests include
Computer Vision, Software
engineering topics like testing,
usability, security, software
architecture.

IJSER

http://www.ijser.org/
http://csrc.nist.gov/groups/SNS/acts/index.html
https://drive.google.com/drive/folders/0B2vHzPHgs0nVZWxtSE5sVVdGUmc
https://drive.google.com/drive/folders/0B2vHzPHgs0nVZWxtSE5sVVdGUmc
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.3/com.btc.tcatg.user.doc/topics/com.btc.tcatg.atgug.doc.html
https://www.ibm.com/support/knowledgecenter/SSB2MU_8.1.3/com.btc.tcatg.user.doc/topics/com.btc.tcatg.atgug.doc.html
https://sourceforge.net/projects/tcgtool/
https://randoop.github.io/randoop/
http://atestingp.sourceforge.net/
https://www.conformiq.com/

	I. INTRODUCTION
	II. Combinatorial Testing And NIST ACTS Tool
	III. Contiki the IoT operating system
	IV. Cooja Simulator
	V. Regression Test Suite and autogeneration of functional test cases
	VI. Regression Test Suite Of Contiki Operating SYSTEM
	VII. Requirements Of The FTCGCC
	VIII. High Level Design Of FTCGCC
	IX. Software Implementation
	A. Java’s regexp parser
	B. Java’s document object model parser
	C. Data structure and functions used in FTCGCC

	X. Ftcgcc Usage In Contiki Environment
	1. github "https://github.com/Abhinandan1414/CoojaTestCaseGeneration", download the content
	2. Create an input file with the syntax which adheres to syntax of "GenTest.txt"
	3. Set the CLASSPATH to $CLASSPATH:cooja.jar:.
	4. Copy the artifacts to directory of your setup
	5. Create directory lib and copy jdom.jar jsyntaxpane.jar log4j.jar JDOM_LICENSE JSYNTAXPANE_LICENSE LOG4J_LICENSE
	6. Then compile the GenTestcsc.java
	7. Run GenTestcsc

	XI. FTCGCC Usage Results
	XII. Conclusion
	References

